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N Smart capture, structured form
processing, scene text detection
and recognition, object detection,
classification, and tracking.
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Problem Statement

Camera Image
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Problem Statement

Camera Image Detected Boundaries
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Industry Solutions

:‘ Office Lens

Google Drive

Insiders

technologies
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Academia Solutions

N |[CDAR SmartDoc 2015 Challenge 1 : Smartphone
document capture competition.

N 5 backgrounds
N 8 submitted methods



%; NATIONAL UNIVERSITY OF
N\ ¢/ SCIENCES AND TECHNOLOGY

Literature Review

N |[CDAR SmartDoc 2015 Challenge 1 : Smartphone
document capture competition.

N 5 backgrounds
N 8 submitted methods
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Method
A2iA-1 [1]
A2iA-2 [1]

ISPL-CVML [1]

LRDE [1]

NetEase [1]
SEECS-NUST [1]
RPPDI-UPE [1]

SmartEngines [1]
L. R. S. Leal, et al [2]

[1] JC. Burie, J. Chazalon, et al. ICDAR2015 competition on smartphone document capture and OCR (SmartDoc).”13th International Conference on Document Analysis and

Recognition, IEEE, 2015.

[2] LRS Leal, BLD Bezerra. "Smartphone camera document detection via Geodesic Object Proposals.” Computational Intelligence (LA-CCI), 2016 IEEE Latin American

Conference on. IEEE, 2016.

Competition Results

Background 1

Background 2 Background 3 Background4 Background 5

0.9724 0.8006 0.9117 0.6352
0.9597 0.8063 0.9118 0.8264
0.9870 0.9652 0.9846 0.9766
0.9869 0.9775 0.9889 0.9837
0.9624 0.9552 0.9621 0.9511
0.8875 0.8264 0.7832 0.7811
0.8274 0.9104 0.9697 0.3649
0.9885 0.9833 0.9897 0.9785
0.9605 0.9444 0.9647 0.9300
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Method
A2iA-1 [1]
A2iA-2 [1]

ISPL-CVML [1]

LRDE [1]

NetEase [1]
SEECS-NUST [1]
RPPDI-UPE [1]

SmartEngines [1]
L. R. S. Leal, et al [2]

[1] JC. Burie, J. Chazalon, et al. ICDAR2015 competition on smartphone document capture and OCR (SmartDoc).”13th International Conference on Document Analysis and

Recognition, IEEE, 2015.

[2] LRS Leal, BLD Bezerra. "Smartphone camera document detection via Geodesic Object Proposals.” Computational Intelligence (LA-CCI), 2016 IEEE Latin American

Conference on. IEEE, 2016.

Competition Results

Background 1

Background 2 Background 3 Background4 Background 5

0.9724 0.8006 0.9117 0.6352 0.1890
0.9597 0.8063 0.9118 0.8264 0.1892
0.9870 0.9652 0.9846 0.9766 0.8555
0.9869 0.9775 0.9889 0.9837 0.8613
0.9624 0.9552 0.9621 0.9511 0.2218
0.8875 0.8264 0.7832 0.7811 0.0113
0.8274 0.9104 0.9697 0.3649 0.2163
0.9885 0.9833 0.9897 0.9785 0.6884
0.9605 0.9444 0.9647 0.9300 0.4117
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Microsoft Office Lens Google Drive
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Industry Systems Results

Deep Iearning? Google Drive
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Approach

N IDEA 1.0 : Regress co-ordinates of the document.
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Approach

N IDEA 1.0 : Regress co-ordinates of the document.

Top left co-ordinates

RS o Top right co-ordinates
m CNN model Bottom right co-ordinates

— Bottom left co-ordinates
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I — Expectation!

-ordinates
co-ordinates
ght co-ordinates
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Why it doesn’t work!

A Only relying on high level features.

AN Known problem for key-point regression [1].

[11Y. Sun, X. Wang, et al. "Deep convolutional network cascade for facial point detection.” Conference on Computer Vision and Pattern Recognition, 2013.
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Why it doesn’t work!

A Only relying on high level features.

\. I/ht\\llh hlﬂf\l‘\lf\m 'Ff\lf' IIf\\I
Level 1 Level 2 Level 3
le3_1
teT—CNN LE21 Tt le2—ENN LE31 '3
I
I - rizl_l le2, ¥
eep f
imft_47m1 1 leT—CNN LE22 '9%2 Ig2—CNN LE32 le32
&l
lel_2rel_2 je1 rel le3 re3
Deep CNN EN1 | n1 7 "If '1;"
Im‘ rr‘l Im rm3
Output positions

Face
bounding box Deep CNN NM1 | "3 rp1CNN RM21 rmcz.‘l MP2CNN RM31rm32=1
Imi_3rm1_3
® o rm3

rm2i a

rmiCNN RM22 .
m2-2

Cascaded CNNs

[11Y. Sun, X. Wang, et al. "Deep convolutional network cascade for facial point detection.” Conference on Computer Vision and Pattern Recognition, 2013.

rm2CNN RM32 |
rm3 2
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Why it doesn’t work!

A Only relying on high level features.

AN Known problem for key-point regression [1].

[11Y. Sun, X. Wang, et al. "Deep convolutional network cascade for facial point detection.” Conference on Computer Vision and Pattern Recognition, 2013.
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Why it doesn’t work!

A Only relying on high level features.
AN Known problem for key-point regression [1].

A We don'’t use the full resolution image.

[11Y. Sun, X. Wang, et al. "Deep convolutional network cascade for facial point detection.” Conference on Computer Vision and Pattern Recognition, 2013.
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Idea 2.0

Deep CNN

Input Image Results visualized

25



%) NATIONAL UNIVERSITY OF

&/ SCIENCES AND TECHNOLOGY

Idea 2.0
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Idea 2.0
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Idea 2.0
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Idea 2.0
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Idea 2.0 Regions normalized by document Size
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Idea 2.0 : Recursive Refinement

Map Prediction
Input to original image

Simple CNN Model
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Idea 2.0 Retain a part of the image

_— closest to prediction by
Map.P_redlf:tlon a factor called Retain Factor
Input to original image or RE

Simple CNN Model
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Idea 2.0

Input

Simple CNN Model

Retain a fraction of image
closest to prediction.
We call this Retain Factor

or RF

Map Prediction
to original image

Recurse

36



£ 5078 NATIONAL UNIVERSITY OF

) SCIENCES AND TECHNOLOGY

Idea 2.0 . . .
Retain a fraction of image

closest to prediction.
We call this Retain Factor

or RF

Map Prediction
Input to original image

Simple CNN Model

Recurse

Stopping Criteria
(H x RF™",W x RF™) <(10x10)
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Model Details

N Architecture similar to Alex-Net for 4 points regression.

Input Image
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Model Details

N Shallow, 5 layer network for recursive refinement.

FC6

300
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Performance Analysis

N |ntel i5-4200U 1.6 Ghz CPU 8 GB ram.

N [n-efficient implementation. V N

N 1920 x 1080 images.

Retain Factor Time in ms
Run-time

0.85 320 complexity :
0.75 210
0.65 150
0.60 130
0.50 100
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Results

Method Background 1 Background 2 Background 3 Background4 Background 5
A2iA-1 [1] 0.9724 0.8006 0.9117 0.6352 0.1890
A2iA-2 [1] 0.9597 0.8063 0.9118 0.8264 0.1892
ISPL-CVML [1] 0.9870 0.9652 0.9846 0.9766 0.8555
LRDE [1] 0.9869 0.9775 0.9889 0.9837 0.8613
NetEase [1] 0.9624 0.9552 0.9621 0.9511 0.2218
SEECS-NUST [1] 0.8875 0.8264 0.7832 0.7811 0.0113
RPPDI-UPE [1] 0.8274 0.9104 0.9697 0.3649 0.2163
SmartEngines [1] 0.9885 0.9833 0.9897 0.9785 0.6884
L. R. S. Leal, et al [2] 0.9605 0.9444 0.9647 0.9300 0.4117

SEECS-NUST-2

[1] JC. Burie, J. Chazalon, et al. ICDAR2015 competition on smartphone document capture and OCR (SmartDoc).”13th International Conference on Document Analysis and
Recognition, IEEE, 2015.
[2] LRS Leal, BLD Bezerra. "Smartphone camera document detection via Geodesic Object Proposals.” Computational Intelligence (LA-CCI), 2016 IEEE Latin American

Conference on. IEEE, 2016.
Experiments done with RF = 0.85
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Results

Method Background 1 Background 2 Background 3 Background4 Background 5
A2iA-1[1] 0.9724 0.8006 0.9117 0.6352 0.1890
A2iA-2 [1] 0.9597 0.8063 0.9118 0.8264 0.1892
ISPL-CVML [1] 0.9870 0.9652 0.9846 0.9766 0.8555
LRDE [1] 0.9869 0.9775 0.9889 0.9837 0.8613
NetEase [1] 0.9624 0.9552 0.9621 0.9511 0.2218
SEECS-NUST [1] 0.8875 0.8264 0.7832 0.7811 0.0113
RPPDI-UPE [1] 0.8274 0.9104 0.9697 0.3649 0.2163
SmartEngines [1] 0.9885 0.9833 0.9897 0.9785 0.6884
L.R. S. Leal, et al [2] 0.9605 0.9444 0.9647 0.9300 0.4117

SEECS-NUST-2 0.9832 | 0.9724 | 0.9830 | 0.9695

[1] JC. Burie, J. Chazalon, et al. ICDAR2015 competition on smartphone document capture and OCR (SmartDoc).”13th International Conference on Document Analysis and
Recognition, IEEE, 2015.
[2] LRS Leal, BLD Bezerra. "Smartphone camera document detection via Geodesic Object Proposals.” Computational Intelligence (LA-CCI), 2016 IEEE Latin American

Conference on. IEEE, 2016.
Experiments done with RF = 0.85
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Results

Method Background 1 Background 2 Background 3 Background4 Background 5
A2iA-1[1] 0.9724 0.8006 0.9117 0.6352 0.1890
A2iA-2 [1] 0.9597 0.8063 0.9118 0.8264 0.1892
ISPL-CVML [1] 0.9870 0.9652 0.9846 0.9766 0.8555
LRDE [1] 0.9869 0.9775 0.9889 0.9837 0.8613
NetEase [1] 0.9624 0.9552 0.9621 0.9511 0.2218
SEECS-NUST [1] 0.8875 0.8264 0.7832 0.7811 0.0113
RPPDI-UPE [1] 0.8274 0.9104 0.9697 0.3649 0.2163
SmartEngines [1] 0.9885 0.9833 0.9897 0.9785 0.6884
L.R. S. Leal, et al [2] 0.9605 0.9444 0.9647 0.9300 0.4117

SEECS-NUST-2 0.9832 | 0.9724 | 0.9830 | 0.9695 | 0.9478

[1] JC. Burie, J. Chazalon, et al. ICDAR2015 competition on smartphone document capture and OCR (SmartDoc).”13th International Conference on Document Analysis and
Recognition, IEEE, 2015.
[2] LRS Leal, BLD Bezerra. "Smartphone camera document detection via Geodesic Object Proposals.” Computational Intelligence (LA-CCI), 2016 IEEE Latin American

Conference on. IEEE, 2016.
Experiments done with RF = 0.85
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Performance Analysis

N Intel i5-4200U 1.6 Ghz CPU 8 GB ram.
N [n-efficient implementation

N Run-time complexity where N is no of pixels: 4 / N

Retain Factor Overall Accuracy Time in ms
0.85 0.9743 320
0.75 0.9701 210
0.65 0.9617 150
0.60 0.9604 130
0.50 0.9513 100

Experiments done with 1920 x 1080 images 48
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Future Directions

N Finding the ideal model configuration.

N Training on better representative data.

N Using a single end-to-end model.

N Code : https://aithub.com/Khurramjaved96/Recursive-
CNNs
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Last note!

N Special thanks to ICDAR for Student’s Travel
Award!



